2 research outputs found

    Hospital energy demand forecasting for prioritisation during periods of constrained supply

    Get PDF
    Purpose: Sustaining healthcare operations without adequate energy capacity creates significant challenges, especially during periods of constrained energy supply. This research develops a clinical and non-clinical activity-based hospital energy model for electrical load prioritization during periods of constrained energy supply. Design/methodology/approach: Discrete event modelling is adopted for development of the hospital energy model (HEM). The building block of the HEM is business process mapping of a hospitals clinical and non-clinical activities. The model prioritizes the electrical load demand as Priority 1, 2 and 3; Priority 1 activities are essential to the survival of patients, Priority 2 activities are critical activities that are required after one to four hours, and Priority 3 activities can run for several hours without electricity. Findings: The model was applied to small, medium, and large hospitals. The results demonstrate that Priority 2 activities have the highest energy demand, followed by Priority 1 and Priority 3 activities, respectively for all hospital sizes. For the medium and large hospitals, the top three contributors to energy demand are lighting, HVAC, and patient services. For the small hospital, it is patient services, lighting, and HVAC. Research limitations/implications: The model is specific to hospitals but can be modified for other healthcare facilities. Practical implications: The resolution of the electrical energy demand down to the business activity level enables hospitals to evaluate current practices for optimization. It facilitates multiple energy supply scenarios, enabling hospital management to conduct feasibility studies based on available power supply options Social implications: Improved planning of capital expenditure and operational budgets. Improved operations during periods of constrained energy supply, which reduces the risk to hospitals and ensures consistent quality of service. Originality/value: Current hospital energy models are limited, especially for operations management under constrained energy supply. A simple to use model is proposed to assist in planning of activities based on available supplyPeer Reviewe

    MATHEMATICAL MODELING AND THE PREVENTION OF HEALTHCARE-ASSOCIATED INFECTIONS

    No full text
    Hospital design and construction, renewal, and sustainment involve complex processes based on the rapid change in healthcare technology, information systems technology, changing practices of care, and the ongoing presence of varied bacterial and viral threats. Quality of care is in many ways predicated upon the quality and safety of the environment upon which the patient receives care. Hospitals operate twenty-four hours a day at staff levels that are often not adequate for the number of patients being seen. This further emphasizes the importance of ensuring that a hospital is designed and operated in the safest manner possible, for both patients and staff. This thesis develops novel methods and toolsets that can be implemented during the hospital design phase as well as during hospital operations, to help ensure patient and staff safety is paramount. These methods quantify the clinical impacts of infection control as well as associated costs and savings, prior to intervention implementation. The Hospital Energy model addresses the management and sustainment of critical care when operating within a distressed power grid environment. These quantitative tools provide an objective assessment of how to best allocate resources and energy within fiscal constraints. Both the Infection De-escalation model and Hospital Energy model are then adapted and expanded to address SARS-CoV-2 transmission in hospitals. The excess energy and economic cost of implementing both ultraviolet light decontamination and negative pressure treatment rooms in hospitals are evaluated through the integration of these two models
    corecore